Abstract

Strong electron correlations lie at the origin of high-temperature superconductivity. Its essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken monotonically upon doping. At large doping, nearest-neighbor correlations between singly charged sites are negative, revealing the formation of a correlation hole, the suppressed probability of finding two fermions near each other. As the doping is reduced, the correlations become positive, signaling strong bunching of doublons and holes, in agreement with numerical calculations. The dynamics of the doublon-hole correlations should play an important role for transport in the Fermi-Hubbard model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.