Abstract

Atomic force microscopy (AFM) was used to study binding of ionic species (Ag+ and H+) to planar substrates and AFM tips chemically modified with self-assembled monolayers (SAMs) formed with terminally functionalized organosiloxanes. Adhesion forces between tips and substrates modified with methylsulfanyl-terminated SAMs and immersed into aqueous Ag+ solutions increased with an increase in the Ag+ concentration up to ≈10 mM Ag+ and then decreased with a further increase in the Ag+ concentration. Contact angles on the same substrates continuously decreased as the concentration of Ag+ increased. The increase in adhesion force between methylsulfanyl groups with an increase in the Ag+ concentration up to ≈10 mM Ag+ can be explained by simultaneous binding of Ag+ to methylsulfanyl groups on the tip and on the substrate, resulting in 1:2 complexes. The decrease in the adhesion force at very high Ag+ concentrations likely reflects the formation of 1:1 complexes in the presence of an excess of Ag+, resulting in el...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.