Abstract

Density functional theory is used to understand the response of the transition metal–oxygen octahedra in LixMn2O4 and LixNi0.5Mn1.5O4 to lithium intercalation and de-intercalation. Electronic structure computations on these compounds for x=0, 0.5 and 1 indicate that the 3d DOS of Mn is almost unaffected to variations in x. On the other hand, the oxygen 2p-DOS and to a lesser extent Ni 3d DOS are found to be sensitive to perturbation. The observations are explained on the grounds of self-regulating response, characteristic of systems having localized d states that communicate with a covalent manifold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.