Abstract

It has been proposed that a black hole horizon should generate Hawking radiation. In order to test this theory, we have created a narrow, low density, very low temperature atomic Bose-Einstein condensate, containing an analog black hole horizon and an inner horizon, as in a charged black hole. We observe Hawking radiation emitted by the black hole. This is the output of the black hole laser. We also observe the exponential growth of a standing wave between the horizons. The latter results from interference between the negative energy partners of the Hawking radiation and the negative energy particles reflected from the inner horizon. We thus observe self-amplifying Hawking radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.