Abstract

We have used ferromagnetic resonance (FMR) at fixed frequency 9.7 GHz to investigate permalloy thin films patterned with antidots to form a five-fold quasicrystal pattern. For DC applied fields H below 3.5 kOe, we observed robust FMR spectra exhibiting two-fold rotational symmetry instead of the five-fold symmetry expected for quasicrystals. Dynamic micromagnetic simulations of the FMR spectra performed at <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm H}=1\ {\rm kOe}$</tex></formula> and 12 kOe exhibit two-fold and ten-fold rotational symmetry, respectively. The ten-fold symmetry observed in simulations is consistent with a saturated state of isolated write fields. We infer the two-fold rotational symmetry observed for <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm H}=1\ {\rm kOe}$</tex></formula> is due to an unsaturated state of five-fold write fields closely spaced on a square lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.