Abstract

Abstract This study examines the westward-propagating convective disturbances with quasi-2-day intervals of occurrence identified over Gan Island in the central Indian Ocean from mid- to late October 2011 during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Atmospheric sounding, satellite, and radar data are used to develop a composite of seven such disturbances. Composites and spectral analyses reveal that 1) the quasi-2-day convective events comprise westward-propagating diurnal convective disturbances with phase speeds of 10–12 m s−1 whose amplitudes are modulated on a quasi-2-day time scale on a zonal scale of ~1000 km near the longitudes of Gan; 2) the cloud life cycle of quasi-2-day convective disturbances shows a distinct pattern of tropical cloud population evolution—from shallow to deep to stratiform convection; 3) the time scales of mesoscale convective system development and boundary layer modulation play essential roles in determining the periodicity of the quasi-2-day convective events; and 4) in some of the quasi-2-day events there is evidence of counterpropagating (westward and eastward) cloud systems along the lines proposed by Yamada et al. Based on these findings, an interpretation is proposed for the mechanisms for the quasi-2-day disturbances observed during DYNAMO that combines concepts from prior studies of this phenomenon over the western Pacific and Indian Oceans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call