Abstract
When a quantum state is subjected to frequent measurements, the time evolution of the quantum state is frozen. This is called the quantum Zeno effect. Here, we observe such an effect by performing frequent discrete measurements in a macroscopic quantum system, a superconducting quantum bit. The quantum Zeno effect induced by discrete measurements is similar to the original idea of the quantum Zeno effect. By using a Josephson bifurcation amplifier pulse readout, we have experimentally suppressed the time evolution of Rabi oscillation using projective measurements, and also observed the enhancement of the quantum state holding time by shortening the measurement period time. This is a crucial step to realize quantum information processing using the quantum Zeno effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.