Abstract

We report the observation of quantum stochastic synchronization (QSS) in a dissipative quantum system-a moderately damped current-biased Josephson junction. We show that when the junction is biased subcritically by a combination of a constant current and a small sinusoidal signal, forced phase synchronization between the otherwise random, incoherent quantum tunneling and the signal may arise as a consequence of the interplay between quantum fluctuation and the weak periodic drive. It is found that optimal synchronization occurs at a signal frequency f(QSS) that is comparable to the quantum tunneling rate. We also find a phenomenon called modulation induced suppression of quantum noise: for signal frequency well below fQSS, the power spectral density of escape time distribution of the junction could be reduced substantially from the floor level of the unmodulated system. Furthermore, we demonstrate that the application of a small signal with proper phase can suppress the average tunneling rate and enhance the stability of the metastable system. Our experimental results agree well with the numerical calculations without the use of adjustable parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.