Abstract

To understand anomalous electron transport in a Hall thruster, plasma turbulence inside the acceleration channel was observed using a 76 GHz microwave interferometer. The dependence of the amplitude of the 100–500 kHz turbulence on magnetic flux density, and the relationships between the turbulence and other plasma instabilities and between the turbulence and the discharge current were investigated through spectral density and bicoherence analysis. The amplitude of electron number density fluctuations of the turbulence, integrating the spectral density from 100 to 500 kHz, is , or almost 10% of the time-averaged electron number density. The amplitude of the turbulence decreases with increase in weak magnetic field strength (coil current less than 0.6 A) and then increases with increase in magnetic field strength. The amplitude of the turbulence has a positive relation to the discharge current, leads to anomalous electron transport inside the acceleration channel, and is coupled with ionization instability. In addition, low-frequency perturbations of several hundred hertz were observed, with a positive relation to the turbulence and coupled with both ionization instability and turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call