Abstract

Cavity-optomechanics enables photon-phonon interaction and correlations by harnessing the radiation-pressure force. Here, we realize a ``cavity-in-a-membrane'' optomechanical architecture which allows detection of the motion of lithographically-defined, ultrathin membranes via an integrated optical cavity. Using a dissipative filtering method, we are able to eliminate the probe light in situ and observe photon-phonon correlations associated with the low-frequency membrane mechanical mode. The developed method is generally applicable for study of low-frequency light scattering processes where conventional frequency-selective filtering is unfeasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call