Abstract

The successful formation of stationary light pulses in a cold atomic medium was demonstrated recently. However, unlike in hot media, a detuning between the counterpropagating fields had to be applied. Here we demonstrate that a significant nonuniform phase variation can be induced during a period of stationary light owing to off-resonantly driven transitions. The experimental results are in good agreement with theoretical predictions for media of low optical depth. For media of high optical depth the numerical simulations indicate that such phase variation becomes negligible. Thus stationary light based on this coupling scheme could be used for possible future applications in quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.