Abstract
Parity-time (PT) symmetry has enabled the demonstration of fascinating wave phenomena in non-Hermitian systems characterized by precisely balanced gain and loss. Until now, the exploration and observation of PT symmetry in scattering settings have largely been limited to propagating waves. Here, we demonstrate a versatile coupled-resonator acoustic waveguide (CRAW) system that enables the observation of PT-symmetric scattering responses for evanescent waves within a bandgap. By examining the generalized scattering matrix in the evanescent wave regime, we observe hallmark PT-symmetric phenomena—including phase transitions at an exceptional point, anisotropic transmission resonances, and laser-absorber modes—in systems that do not require balanced distributions of gain and loss. Owing to the peculiar energy transfer features of evanescent waves, our results not only demonstrate a distinct pathway for observing PT symmetry, but also enable strategies for exotic energy tunneling mechanisms, paving fresh directions for wave engineering grounded in non-Hermitian physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.