Abstract

The magnetic behavior of TiO2 and doped TiO2 nanocrystals has been a challenge due to the unambiguous nature of defects present in oxide semiconductors. Here, a simple, low-temperature sol–gel method is developed for the synthesis of low-dimensional and highly efficient stable anatase TiO2 nanocrystals. The X-ray powder diffraction pattern and Raman spectra confirm the formation of a single-phase anatase structure of TiO2. High-resolution transmission electron microscopy studies reveal the crystalline nature of the sol–gel-derived nanocrystals. The increase in lattice parameters together with the shifting and broadening of the most intense Eg(1) mode in micro-Raman spectra of Co-doped TiO2 nanocrystals indicate the incorporation of Co in TiO2. Shifting of the absorption edge to the visible region in UV–visible spectra indicates narrowing of the band gap due to Co incorporation in TiO2. X-ray photoelectron spectra confirm the presence of Co2+ and Co3+ in Co-doped TiO2 samples. Oxygen vacancy defects lead t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.