Abstract

Non-Hermitian topological phases exhibit a number of exotic features that have no Hermitian counterparts, including the skin effect and breakdown of the conventional bulk-boundary correspondence. Here, we implement the non-Hermitian Su-Schrieffer-Heeger Hamiltonian, which is a prototypical model for studying non-Hermitian topological phases, with a solid-state quantum simulator consisting of an electron spin and a ^{13}C nuclear spin in a nitrogen-vacancy center in a diamond. By employing a dilation method, we realize the desired nonunitary dynamics for the electron spin and map out its spin texture in the momentum space, from which the corresponding topological invariant can be obtained directly. From the measured spin textures with varying parameters, we observe both integer and fractional winding numbers. The non-Hermitian topological phase with fractional winding number cannot be continuously deformed to any Hermitian topological phase and is intrinsic to non-Hermitian systems. Our result paves the way for further exploiting and understanding the intriguing properties of non-Hermitian topological phases with solid-state spins or other quantum simulation platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.