Abstract

One of the predictions of the energy landscape theory of protein folding is the possibility of barrierless, “downhill” folding under certain conditions. The protein 1BBL has been proposed to fold by such a downhill mechanism, though this is a matter of some dispute. We carried out extensive replica exchange molecular dynamics simulations on 1BBL in explicit solvent to address this controversy and provide a microscopic picture of its folding thermodynamics. Our simulations show two distinct structural transitions in the folding of 1BBL. A low-temperature transition involves a disordering of the protein's tertiary structure without loss of secondary structure. A distinct, higher temperature transition involves the complete loss of secondary structure and dissolution of the hydrophobic core. In contrast, control simulations of the 1BBL homolog E3BD show a single high temperature unfolding transition. Further simulations of 1BBL at high ionic strength show a significant destabilization of helix II but not helix I, suggesting that the apparent folding cooperativity of 1BBL may be highly dependent on experimental conditions. Although our simulations cannot provide definitive evidence of downhill folding in 1BBL, they clearly show evidence of a complex, non-two-state folding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.