Abstract

Skyrmion imaging and electrical detection via topological Hall (TH) effect are two primary techniques for probing magnetic skyrmions, which hold promise for next-generation magnetic storage. However, these two kinds of complementary techniques have rarely been employed to investigate the same samples. We report the observation of nanoscale skyrmions in SrIrO3/SrRuO3 (SIO/SRO) bilayers in a wide temperature range from 10 to 100 K. The SIO/SRO bilayers exhibit a remarkable TH effect, which is up to 200% larger than the anomalous Hall (AH) effect at 5 K, and zero-field TH effect at 90 K. Using variable-temperature, high-field magnetic force microscopy (MFM), we imaged skyrmions as small as 10 nm, which emerge in the same field ranges as the TH effect. These results reveal a rich space for skyrmion exploration and tunability in oxide heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call