Abstract
We report the dependence of the magnetization dynamics in a square artificial spin-ice lattice on the in-plane magnetic field angle. Using two complementary measurement techniques—broadband ferromagnetic resonance and micro-focused Brillouin light scattering spectroscopy—we systematically study the evolution of the lattice dynamics, for both a coherent radio frequency excitation and an incoherent thermal excitation of spin dynamics. We observe a splitting of modes facilitated by inter-element interactions that can be controlled by the external field angle and magnitude. Detailed time-dependent micromagnetic simulations reveal that the split modes are localized in different regions of the square network. This observation suggests that it is possible to disentangle modes with different spatial profiles by tuning the external field configuration.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.