Abstract

We report the experimental observation of the interaction and attraction of many localized modes in a two-dimensional system realized by a disordered optical fiber supporting transverse Anderson localization. We show that a nonlocal optically nonlinear response of thermal origin alters the localization length by an amount determined by the optical power and also induces an action at a distance between the localized modes and their spatial migration. Evidence of a collective and strongly interacting regime is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.