Abstract

ABSTRACTOptical-isothermal capacitance transient spectroscopy (O-ICTS) was used to distinguish the deep levels which occur in unintentionally doped n-type GaN by means of their characteristic optical cross section. GaN grown by metalorganic vapor phase epitaxy (MOVPE) and hydride vapor phase epitaxy (HVPE) were compared. Correspondence between optical and thermal emission characteristics of previously discovered levels, E2 (∼Ec-0.55 eV) and E4 (∼EC-1.0 eV), were clearly determined by observing their sequential appearance in the ICTS spectra. Whether by thermal or optical stimulation, the emission from E4 was found to be broad in nature; it is consequently believed to involve a defect. The total measured concentration of deep levels, including a prominent level which photoionizes in the range 2.5 to 3.0 eV below the conduction band, is greater in the GaN grown by MOVPE than by HVPE that was tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.