Abstract

In this dissertation, a measurement of CP-violating effects in decays of neutral B meson is presented. The data sample for this measurement consists of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstates J/{psi} K{sub S}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and {eta}{sub c}K{sub S}{sup 0}, or in the flavor eigenstates D(*){sup -} {pi}{sup +}/{rho}{sup +}/a{sub 1}{sup +} and J/{psi} K*{sup 0} (K*{sup 0} {yields} K{sup +}{pi}{sup -}). The other B meson is determined to be either a B{sup 0} or a {bar B}{sup 0}, at the time of its decay, from the properties of its decay products. The proper time {Delta}t elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. The CP asymmetry amplitude sin2{beta} is determined by the distributions of {Delta}t in events with a reconstructed B meson in CP eigenstates. The detector resolution and the b-flavor-tagging parameters are constrained by the {Delta}t distributions of events with a fully reconstructed flavor eigenstate. From a simultaneous maximum-likelihood fit to the {Delta}t distributions of all selected events in CP and flavor eigenstates, the value of sin2{beta} is measured to be 0.755 {+-} 0.074(stat) {+-} 0.030(syst). This value is in agreement with the Standard Model prediction, and represents a successful test of the Kobayashi-Maskawa mechanism of CP violation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call