Abstract

Magnon polarons, a type of hybridized excitations between magnons and phonons, were first reported in yttrium iron garnet as anomalies in the spin Seebeck effect responses. Here, we report an observation of antiferromagnetic (AFM) magnon polarons in a uniaxial AFM insulator Cr_{2}O_{3}. Despite the relatively higher energy of magnon than that of the acoustic phonons, near the spin-flop transition of ∼6 T, the left-handed magnon spectrum shifts downward to hybridize with the acoustic phonons to form AFM magnon polarons, which can also be probed by the spin Seebeck effect. The spin Seebeck signal is founded to be enhanced due to the magnon polarons at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.