Abstract

Cryptochromes are suggested to be involved in the bird magnetoreception based on the radical pair mechanism (RPM), a well established theory of weak magnetic field effects on chemical reactions. Two members of cryptochrome/photolyase family were found to respond to magnetic field, however, no direct responses of bird cryptochrome to magnetic field as weak as the Earth's magnetic field have been obtained so far. In this study, we used transient fluorescence spectroscopy to characterize the weak magnetic field effects of bird cryptochromes. To do this, we cloned the cryptochrome 1 gene (clCRY1) from the retina of homing pigeons (Columba livia), expressed it in insect Sf9 cells and analyzed the transient fluorescence of purified clCRY1 by application of 45-300μT magnetic fields. The flavin adenine dinucleotide (FADox ) and glucose oxidase (GOD) in PBS buffer were set as controls which could be excited by light to generate radicals, but would not be sensitive to magnetic field. We observed that the transient fluorescence spectra of clCRY1 were sensitive to the applied magnetic field at room temperature. Our result provides a new proof of the cryptochrome-based model of avian magnetoreception in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.