Abstract

Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. Iron-based superconductors with nontrivial band topology have recently emerged as a surprisingly promising platform for creating distinct Majorana zero modes in magnetic vortices in a single material and at relatively high temperatures. The magnetic field-induced Abrikosov vortex lattice makes it difficult to braid a set of Majorana zero modes or to study the coupling of a Majorana doublet due to overlapping wave functions. Here we report the observation of the proposed quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface. We observe its hybridization with a nearby field-induced Majorana vortex in iron-based superconductor FeTe0.55Se0.45. We also observe vortex-free Yu-Shiba-Rusinov bound states at the Fe adatoms with a weaker coupling to the substrate, and discover a reversible transition between Yu-Shiba-Rusinov states and Majorana zero mode by manipulating the exchange coupling strength. The dual origin of the Majorana zero modes, from magnetic adatoms and external magnetic field, provides a new single-material platform for studying their interactions and braiding in superconductors bearing topological band structures.

Highlights

  • Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing

  • The type-I adatoms, which represent about 10% of our measurements, exhibit a sharp zero-bias peaks (ZBPs) reminiscent of a Majorana zero modes (MZMs) coexisting with other in-gap states in the dI/dV spectrum

  • The compelling evidence attributes the novel coalescence of in-gaps states toward the ZBP to the change in the nature of the magnetic impurity-induced defect state from the vortex-free YSR state to a vortex state with a vortex MZM (Fig. 3b), which is fully consistent with the theoretical prediction that increasing the exchange coupling of an Fe impurity induces a transition from the YSR states to the quantum anomalous vortex (QAV) states hosting a MZM in FeTe0.55Se0.45 superconductors[28]

Read more

Summary

Introduction

Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. The ZBP persists to about 2.5 nm from the center, indicating the existence of a localized zero-energy state bound to the Fe adatom with the spatial extent comparable to that of the MZM in a magnetic field-induced vortex core in FeTe0.55Se0.456.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.