Abstract
We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna. This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron temperature, with a typical frequency of a few tens of Hz which increases with external magnetic field as well as radiofrequency (RF) power. The relative oscillation amplitude decreases with magnetic field and RF power, but the rising time and pulse width do not change significantly under different discharge conditions. The oscillation can only be observed in some specific conditions of low magnetic fields and low RF power when the gas flows in from one end of the discharge area and out from another end. This global instability is suggested to be attributed to the pressure instability of neutral depletion, which is the result of compound action of gas depletion by heating expansion and gas replenishment from upstream. There are two kinds of oscillations, large and small amplitude oscillations, occurring in different discharge modes. This study could be a good verification of and complement to earlier experiments. This kind of spontaneous pulse phenomenon is also helpful in realizing a pulsing plasma source without a pulsed power supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.