Abstract

We measure the temporal pair correlation function g(2)(τ) of a trapped gas of bosons above and below the critical temperature for Bose-Einstein condensation. The measurement is performed in situ by using a local, time-resolved single-atom sensitive probing technique. Third- and fourth-order correlation functions are also extracted. We develop a theoretical model and compare it with our experimental data, finding good quantitative agreement. We discuss, finally, the role of interactions. Our results promote temporal correlations as new observables to study the dynamical evolution of ultracold quantum gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.