Abstract
A broad understanding of the binding modes of ligands and inhibitors to cytochrome P450 is vital for the development of new drugs. We investigated ligand binding in a site-specific fashion on cytochrome P450 BM-3 from Bacillus megaterium, a 119 kDa paramagnetic enzyme, using solid-state magic angle spinning nuclear magnetic resonance methods. Selective labeling and longitudinal relaxation effects were utilized to identify the peaks in a site-specific fashion and to provide evidence for binding. Well-resolved one-dimensional and two-dimensional NMR spectra of cytochrome P450 BM-3 reveal shifts upon binding of its substrate, N-palmitoylglycine. These data are consistent with the crystallographic result that a biochemically important amino acid residue, Phe87, moves upon ligation. This experimental scheme provides a tool for probing ligand binding for complex systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.