Abstract

We find that the superconductivity in the thin films of the formerly believed non-superconducting parent compound FeTe is accompanied by an emergence of second order with a correlation length of 742 nm and 258 nm at 10 K and 300 K, respectively. The structural phase transition found in iron pnictide superconductors, in non-superconducting FeTe bulk samples, and in FeSe superconducting thin films is not observed in the superconducting FeTe thin films. The interplay between superconductivity and long range order may suggest the crucial role of competition between electronic localization and itinerancy which leads to strong quantum fluctuations in the FeTe system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.