Abstract
Abstract Intrinsic structural phase is a crucial foundation for the fundamental physical properties, and for creating innovative devices with unprecedented performances and unique functionalities. Long-range ferromagnetic orders of van der Waals CrI3 are strongly tied with interlayer stacking orders. However, the intrinsic structure of few-layer CrI3 still remains elusive; the predicted monoclinic phase has not yet been experimentally detected in bare few-layer CrI3. Here we uncover the intrinsic structure of few-layer CrI3 with interlayer antiferromagnetic coupling, which unambiguously show monoclinic stacking in both bare and hBN-encapsulated bilayer and tri-five-layer CrI3 throughout an entire temperature range from 300 to 10 K. An exotic spring damping effect from hBN encapsulation layers is experimentally observed in hBN/CrI3/hBN heterostructures, which partly hinders interlayer sliding of CrI3. This work demonstrates the intrinsic monoclinic crystal phase of few-layer CrI3 and associated correlation with magnetic orders, opening up numerous opportunities for creating magnetic texture by stacking design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.