Abstract
The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly polarized spin systems. It is found that the occurrence of intermolecular double-quantum coherence signal dips is related to sample geometry, field inhomogeneity and dipolar correlation distance. If the field inhomogeneity is refocused, the signal dip occurs at a fixed position whenever the dipolar correlation distance approaches the sample dimension. However, the position is shifted when the field inhomogeneity exists. Experiments and simulations are performed to validate our theoretic analysis. These signal features may offer a unique way to investigate porous structures and may find applications in biomedicine and material science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.