Abstract

Cellulose synthase is the enzyme that produces cellulose in the living organisms like plant, and has two functions: polymerizing glucose residues (polymerization) and assembling these polymerized molecules into a crystalline microfibril with a "cellulose I" crystallographic structure (crystallization). Many studies, however, have shown that an in vitro reaction of cellulose synthase produces aggregates of a non-native crystallographic structure "cellulose II", despite the remaining polymerizing activity. This is partial denaturation or loss of crystallization function in cellulose synthase, which needs to be resolved to reconstitute its native activity. To this end, we aimed to clarify the process of cellulose II formation by bacterial cellulose synthase in vitro, using in situ small angle X-ray scattering (SAXS). An increase in scattering specific to synthesis was observed around two distinct regions of q (0.2-0.4 nm-1 and <0.1 nm-1) by time-resolved SAXS measurement. The scattering at higher q-region appears prior to lower-q scattering at beginning of the reaction, indicating the existence of smaller primitive aggregations at the initiation stage. This study demonstrates the use of in situ SAXS measurement to decipher the dynamics of biosynthesized cellulose chains, which is a remarkable example of polymer assembly in ambient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call