Abstract

The air−liquid interface of aqueous hydrogen-halide solutions is examined using vibrational sum frequency generation spectroscopy. Infrared and Raman spectroscopies are used to compare the effects of the ions on the water structure in the bulk solutions to that of the interface. The addition of HCl, HBr, and HI to water is found to cause a significant disruption in the hydrogen-bonding network at the air−liquid interface, similar to that which is observed for sodium halides. However, a convolution of additional effects are observed for acids at the air−aqueous interface: interfacial H3O+ (and H5O2+) which gives rise to surface potential changes, an increase in interfacial depth from interfacial concentration gradients, and a decrease in the number of dangling OH bonds relative to the neat water surface. Additionally, and moreover, sum frequency spectra reveal a surface proton continuum at frequencies below 3000 cm-1, indicating that hydronium ions (and Zundel ions) exist at the air−aqueous interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.