Abstract
Improving water management can make a significant contribution to achieving most of the Millennium Development Goals established by the UN General Assembly in 2000, especially those related to poverty, hunger, and major diseases. The World Summit on Sustainable Development (WSSD) in 2002 recognized this need. Water and sanitation in particular received great attention from the Summit. The Johannesburg Plan of Implementation recommended to improve water resources management and scientific understanding of the water cycle through joint cooperation and research. For this purpose, it is recommended to promote knowledge sharing, provide capacity building, and facilitate the transfer of technology including remote-sensing (RS) and satellite technologies, especially to developing countries and countries with economies in transition, and to support these countries in their efforts to monitor and assess the quantity and quality of water resources, for example, by establishing and/or further developing national monitoring networks and water resources databases and by developing relevant national indicators. The Johannesburg Plan also adopted integrated water resources management as the overarching concept in addressing and solving water-related issues. As a result of the commitments made in the Johannesburg Plan of Implementation, several global and regional initiatives have emerged. Current international initiatives such as the Global Monitoring for Environment and Security (GMES) program of the European Commission and the European Space Agency (ESA), and the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan, have all identified Earth observation (EO) of the water cycle as the key in helping to solve the world s water problems. The availability of spatial information on water quantity and quality will also enable closure of the water budget at river basin and continental scales to the point where effective water management is essential (e.g., as requested by the European Union s Water Framework Directive (WFD), as well as national policies). Geo-information science and EO are vital in achieving a better understanding of the water cycle and better monitoring, analysis, prediction, and management of the world s water resources. The major components of the water cycle of the Earth system and their possible observations are presented. Such observations are essential to understand the global water cycle and its variability, both spatially and temporally, and can only be achieved consistently by means of EOs. Additionally, such observations are essential to advance our understanding of coupling between the terrestrial, atmospheric, and oceanic branches of the water cycle, and how this coupling may influence climate variability and predictability. Water resources management directly interferes with the natural water cycle in the forms of building dams, reservoirs, water transfer systems, and irrigation systems that divert and redistribute part of the water storages and fluxes on land. The water cycle is mainly driven and coupled to the energy cycle in terms of phase changes of water (changes among liquid, water vapor, and solid phases) and transport of water by winds in addition to gravity and diffusion processes. The water-cycle components can be observed with in situ sensors as well as airborne and satellite sensors in terms of radiative quantities. Processing and conversion of these radiative signals are necessary to retrieve the water-cycle components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.