Abstract

We present an experiment of observing the geometric phase in a superconducting circuit where the resonator and the qutrit energy levels are dispersively coupled. The drive applied to the resonator displaces its state components associated with the qutrit’s ground state and first-excited state along different circular trajectories in phase space. We identify the resonator’s phase-space trajectories by Wigner tomography using an ancilla qubit, following which we observe the difference between the geometric phases associated with these trajectories using Ramsey interferometry. This geometric phase is further used to construct the single-qubit π-phase gate with a process fidelity of 0.851±0.001.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.