Abstract

The experimental discovery of the topological Dirac semimetal establishes a platform to search for various exotic quantum phases in real materials. ZrSiS-type materials have recently emerged as topological nodal-line semimetals where gapped Dirac-like surface states are observed. Here, we present a systematic angle-resolved photoemission spectroscopy (ARPES) study of ZrGeTe, a nonsymmorphic symmetry protected Dirac semimetal. We observe two Dirac-like gapless surface states at the same $\bar X$ point of the Brillouin zone. Our theoretical analysis and first-principles calculations reveal that these are protected by crystalline symmetry. Hence, ZrGeTe appears as a rare example of a naturally fine tuned system where the interplay between symmorphic and non-symmorphic symmetry leads to rich phenomenology, and thus opens for opportunities to investigate the physics of Dirac semimetallic and topological insulating phases realized in a single material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.