Abstract

The halogen ions Br- and Cl- together with NO3 -, SO4 =, MSA- (methane sulfonate), Na+ and NH4 + were analysed by ion chromatography in extracts of more than 800 aerosol cellulose filter samples taken at Ny Alesund, Svalbard (79°N, 12°E) in spring 1996 (March 27 - May 16) within the European Union project ARCTOC (Arctic Tropospheric Ozone Chemistry). Anticorrelated variations between f-Br (filterable bromine, i.e. water soluble bromine species that can be collected by aerosol filters) and ozone within the arctic troposphere were evaluated at a resolution of 1 or 2 hours for periods with depleted ozone and 4 hours at normal ozone. A mean f-Br concentration of 11 ng m-3 (0.14 nmol m-3) was observed for the whole campaign, while maximum concentrations of 80 ng m-3 (1 nmol m-3) were detected during two total O3-depletion events (O3 drop to mixing ratios below the detection limit of < 2 ppb). Anticorrelation between f-Br and O3 was also seen during minor O3-depletion episodes (sudden drop in O3 by at least 10 ppb, but O3 still exceeding the detection limit) and even for ozone variations near its background level (40-50 ppb). A time lag of about 10 hours between the change of ozone and of f-Br concentrations could only be found during a total ozone depletion event, when f-Br reached its maximum values several hours after ozone was totally destroyed. Bromine oxide (BrO) concentrations, measured by DOAS (Differential Optical Absorption Spectroscopy), and f-Br showed a coincident variability during almost the entire campaign (except in the case of total O3-loss). Frequently enhanced anthropogenic nitrate and sulphate concentrations were observed during O3-depletion periods. At O3 concentrations < 10 ppb sulphate and nitrate exceed their typical mean level by 54% and 77%, respectively. This may indicate a possible connection between acidity and halogen release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.