Abstract

Adsorption states of carbon dioxide on the Cu(997) and Cu(111) surfaces were investigated by infrared reflection absorption spectroscopy, temperature programmed desorption, and X-ray photoelectron spectroscopy. CO2 molecules are physisorbed on the Cu(997) surface at temperatures below 70 K; neither chemisorption nor dissociation of CO2 occurs on the Cu(997) surface at this low temperature. However, the vibrational spectra of adsorbed CO2 depend significantly on the substrate temperature and coverage. IR spectra of CO2 vibrational modes at 70 K show asymmetric Fano line shapes, while only normal absorption bands are observed when CO2 is adsorbed at 20 K. Fano line shapes are also observed for CO2 on Cu(111) at 85 K. The observation of Fano effect indicates the coupling between the electronic continuum states of the Cu surface and the internal vibrational modes of CO2 even in such physisorbed system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call