Abstract
The state-resolved differential cross sections for the Rydberg-atom (RA) inelastic scattering process H*(n = 46) + O2(v = 0, j = 1,3) → H*(n') + O2(v', j') have been measured by using the H-atom Rydberg tagging time-of-flight (HRTOF) technique. Extensive vibrational excitation of O2 products has been observed at the two collision energies of 0.64 and 1.55 eV. Experimental results show that the O2 products in the low vibrationally excited states are clearly forward-scattered, whereas those in the highly vibrationally excited states are mainly backward-scattered. Partially resolved rotational structures were also observed and assigned. The striking observation of extremely high energy transfer from translational to vibrational excitation at the backward direction could be explained involving charge transfer between proton and O2 molecule and possibly complex formation during the scattering process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.