Abstract

We report what is, to our knowledge, the first experimental observation of the ultrafast evolution dynamics from bound states (BSs) to single-pulse states (SPSs) by using the dispersive Fourier-transform (DFT) technique. The evolutions from three categories of initial BSs to SPSs are spectrally resolved in real time. Usually, accompanied by complex soliton–soliton interaction and competition, one of the two bound pulses weakens to disappearance, and the other one evolves into SPS. During the transition, the two bound pulses ordinarily depart away from each other with complex changes of relative phase. However, it is found that not all the evolutions are accompanied by the increase of temporal separation between two bound pulses. The obtained results would facilitate a deep understanding of complex dynamics in nonlinear systems and provide valuable data for further theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.