Abstract

The influence of spherical nanoindentation on the band edge and deep level emission of single crystal c-axis ZnO has been studied by cathodoluminescence (CL) spectroscopy and monochromatic imaging. Excitonic emission is quenched at the indent site and defect emission in the range of 450–720nm is enhanced. Analysis of CL monochromatic images and spectra suggests that at least two different defect states are responsible for the broad defect emission band. Additionally, the indents result in a strong crystallographic dependence of the defect emission, producing a rosette feature with [112¯0] [21¯1¯0], and [12¯10] orientations that reflect the star-shaped luminescence quenching observed at the excitonic peak (390nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.