Abstract

Improved confinement caused by Ne injection is investigated in EAST. The safety factor q profile and electron-scale turbulence are studied with a polarimeter-interferometer system and CO2 laser collective scattering system in a series of Ne injection experiments in EAST. Ne with a suitable injection rate can lead to negative magnetic shear in the plasma core, which promotes electron-scale turbulence suppression. The continuous injection of Ne under the reversed shear condition further reduces the electron-scale turbulence intensity. Core electron temperature increase and confinement improvement are observed. QuaLiKiz is applied to model the influence of an impurity and reversed q on turbulence. The combination of stabilization effects of negative magnetic shear and Ne on turbulence is much stronger than the impurity’s own effect, which could explain the experimentally observed electron temperature (T e) increase and turbulence suppression. Besides, the relationship between pedestal structure induced by Ne injection and lower hybrid wave (LHW)-driven current deposition is discussed. These results provide a new perspective to improve the confinement in the case of Ne injection, i.e. to adjust the Ne injection to modify the ideal plasma equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.