Abstract

Dynamic evidence of the mechanism for surfactant adsorption to surfaces of like charge has been observed. Additionally, removal and retention of surfactant molecules on the surface were observed as a function of time. A decrease in surface charge is observed when metal counterions are introduced and is dependent on charge density as well as valency of the metal ion. When surfactant species are also present with the metals, a dramatic increase in surface charge arises. We observed that the rate and quantity of surfactant adsorption can be controlled by the presence of divalent Ca2+. Under isotonic conditions the introduction of Ca2+ is also easily distinguishable from that of monovalent Na+ and provides dynamic evidence of the divalent "cation bridging" phenomenon. Dynamic changes to surface charge are experimentally determined by utilizing current monitoring to quantify the zeta potential in a microfluidic device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call