Abstract

We study the diffraction phase of different orders via the Dyson expansion series, for ultracold atomic gases scattered by a standing-wave pulse. As these diffraction phases are not observable in a single pulse scattering process, a temporal Talbot-Lau interferometer consisting of two standing-wave pulses is demonstrated experimentally with a Bose-Einstein condensate to explore this physical effect. The role of the diffraction phases is clearly shown by the second standing-wave pulse in the relative population of different momentum states. Our experiments demonstrate obvious effects beyond the Raman-Nath method, while agree well with our theory by including the diffraction phases. In particular, the observed asymmetry in the dependence of the relative population on the interval between two standing-wave pulses reflects the diffraction phase differences. The role of interatomic interaction in the Talbot-Lau interferometer is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.