Abstract

The importance of crystalline defects in determining the macroscopic properties of metals, ceramics, and semiconductors is well known. Crystalline polymers also exhibit defect structures, but analyzing of defects in polymers is more difficult because the topological connectivity of the covalently bonded polymer chains means that solid polymers typically exhibit larger amounts and types of disorder than crystals of low molar mass molecules. Imaging is also more complex because of the inherent electron beam sensitivity of these typically organic materials. Recent developments in synthesis and processing have made it possible to achieve very highly ordered polymer systems. Defects in these materials will undoubtedly play a critical role in determining mechanical properties, optical behavior, and transport properties such as electrical conductivity.Direct imaging techniques are particularly important for studying defects because the typically low volume fraction of defects in the crystalline phase makes diffraction experiments difficult if not impossible. Also, in diffraction information about the relative orientation of individual crystallites is lost. It is not surprising, then, that High Resolution Electron Microscopy (HREM) has become extremely important for studying defects in inorganic materials systems. HREM studies of polymers have been limited by the beam sensitivity of organic compounds. Recently, however, high voltage instruments, low dose techniques, and image processing procedures have made it possible to obtain lattice images in systems with beam sensitivities as low as 0.003 C/cm2 (2 e-/A2).This review discusses the nature of defects in crystalline polymer systems and illustrates how proper application of high resolution imaging techniques promises to answer questions in polymer morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.