Abstract

Curcumin-encapsulated Pickering emulsion (Cur-PE) was successfully prepared using cellulose nanocrystals (CNCs)-whey protein isolate (WPI) complex as a stabilizer to control the size and stability of the Cur-PE. Firstly, needle-like CNCs were prepared by acid hydrolysis, and the mean particle size, polydispersity index (PDI), zeta potential, and aspect ratio of the CNCs were 100.7 nm, 0.32, −43.6 mV, and 20.8, respectively. The Cur-PE-C0.5W0.1, prepared with 0.5 wt% CNCs and 0.1 wt% WPI at pH 2, had a mean droplet size of 230.0 nm, PDI of 0.275, and zeta potential of +53.5 mV. The Cur-PE-C0.5W0.1 prepared at pH 2 exhibited the highest stability during storage for 14 days. FE-SEM revealed that the droplets of the Cur-PE-C0.5W0.1 prepared at pH 2 were spherical and fully covered by CNCs. The adsorption of CNCs at the oil-water interface increases the encapsulation efficiency (89.4 %) of curcumin in the Cur-PE-C0.5W0.1 and protects curcumin from pepsin digestion in the gastric phase. However, the Cur-PE-C0.5W0.1 was sensitive to release curcumin in the intestine phase. The CNCs-WPI complex developed in this study could serve as a promising stabilizer to make Pickering emulsions stable at pH 2 for the encapsulation and delivery of curcumin to the expected target area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call