Abstract

AbstractGlow discharge sputtering on CuNi alloy surfaces is studied by optical emission spectroscopy and Auger electron spectroscopy. The relative intensity of Cu emission lines against Ni lines increases with a decrease in supplied power in very low wattage regions. These changes of the relative intensities principally depend on the sputtering parameters of constituent elements in CuNi alloy; that is, the preferential sputtering of copper. Surface analysis by Auger electron spectroscopy shows that when samples are sputtered by glow discharges in very low power operations, the deformation layer which has a nickel‐enriched composition exists on alloy surfaces. We discuss the effect of glow discharge sputterings on surface compositions using the two analytical methods described above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.