Abstract

Zirconium based alloys are used as fuel claddings in Light Water Reactors due to their good resistance to degradation and low neutron absorption cross section. However, life limiting processes occur during the service of the cladding such as oxidation and hydrogen-uptake. During the oxidation of the material, hydrogen enters the metal and it precipitates as brittle hydrides. In this study the 3D microstructure of a high burn-up and a low-burnup LK3/L Zircaloy-2 cladding is characterized and compared using FIB Tomography. 3D reconstruction of the oxides of the claddings shows that the crack volume fraction increases with the number of cycles in the reactor, reducing its protectiveness against further corrosion and H-uptake. The visualization of the metal-oxide interface revealed that the oxidation of the hydrides in the metal could induce crack formation in the oxide and therefore it could be one of the causes of the increasing oxidation and H-uptake in this material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.