Abstract

Moiré superlattices that consist of two or more layers of 2D materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional superconductivity, and quantum anomalous Hall effect. Recently, magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the as-yet unexplored band structure of MATTG near charge neutrality is systematically measured. These measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call