Abstract
Acoustic cavitation is a powerful technique to probe electron bubbles inside the liquid helium. The critical pressure to explode a bubble depends on the number and quantum state of electrons inside the bubble and if the bubble is trapped on a vortex. Here, we report cavitation events that occur at pressure magnitudes approximately 70% lower compared to single electron bubbles. We have considered various possibilities, e.g., single electron bubbles trapped on vortex lines or primary electrons depositing the energy at the acoustic focus and compared the results of our experiments with past measurements reported in the literature. We consider the possibility these new species of bubbles are multielectron bubbles with a small (< 20) number of electrons and discuss future experiments to confirm the same.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.