Abstract

The evolution of hydrogen and oxygen gasses in a 0.36-M KOH electrolyte was observed in a magnetic field, and the void fraction was calculated by a hydrodynamic model. Both gasses evolving on a platinum working electrode formed a bubble layer which increased the ohmic resistance. In addition to natural convection, magnetohydrodynamic (MHD) convection in a magnetic field improved the electrolytic conductivity by supplying a fresh solution (pumping effect) and removing gas bubbles. The MHD convection reduced the void fraction of hydrogen gas more than that of oxygen, which can be explained by the poor wettability of the oxygen evolving electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call