Abstract

AbstractThe study of heterogeneous reactions for enantiomeric processes based on inorganic crystals has been resurgent in recent years. However, the question remains how homochirality develops in nature and chemical reactions. Here, the successful growth of B20 group PdGa single crystals with different chiral lattices enabled us to achieve enantioselective recognition of 3,4‐dihydroxyphenylalanine (DOPA) based on a new mechanism, namely orbital angular momentum (OAM) polarization. The orbital textures of PdGa crystals indicate large OAM polarization near the Fermi level and carrying opposite signs. A positive or negative magnetization in the [111] direction is expected depending on the chiral lattice of PdGa crystals. Due to this, the adsorption energies of PdGa crystals and DOPA molecules differ depending on how well the O‐2p orbital of DOPA pairs with the Pd‐4d orbital of PdGa. The results provide one possible explanation for how chirality arises in nature by providing an enantioselective route with pure inorganic crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.